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Using modelled relationships and satellite
observations to attribute modelled aerosol
biases over biomass burning regions

Qirui Zhong 1 , Nick Schutgens 1, Guido R. van der Werf 1,
Twan van Noije 2, Susanne E. Bauer3,4, Kostas Tsigaridis 3,4, Tero Mielonen5,
Ramiro Checa-Garcia 6,7, David Neubauer 8, Zak Kipling 9, Alf Kirkevåg10,
Dirk J. L. Olivié10, Harri Kokkola 5, Hitoshi Matsui 11, Paul Ginoux12,
Toshihiko Takemura 13, Philippe Le Sager 2, Samuel Rémy14,
Huisheng Bian15,16 & Mian Chin 16

Biomass burning (BB) is a major source of aerosols that remain the most
uncertain components of the global radiative forcing. Current global models
have great difficulty matching observed aerosol optical depth (AOD) over BB
regions. A common solution to address modelled AOD biases is scaling BB
emissions. Using the relationship from an ensemble of aerosol models and
satellite observations, we show that the bias in aerosol modelling results pri-
marily from incorrect lifetimes and underestimated mass extinction coeffi-
cients. In turn, these biases seem to be related to incorrect precipitation and
underestimated particle sizes. We further show that boosting BB emissions to
correct AOD biases over the source region causes an overestimation of AOD in
the outflow from Africa by 48%, leading to a double warming effect compared
with when biases are simultaneously addressed for both aforementioned
factors. Such deviations are particularly concerning in a warming future with
increasing emissions from fires.

Biomass burning (BB) injects large amounts of aerosols into the
atmosphere, which significantly affects the Earth’s climate, human
health, and ecosystems1–3. Recent evidence points towards an
increasing trend in fires over several forest fire-dominated BB regions,
such as Siberia, North America, and Australia, resulting in substantially
high BB aerosol (BBA) emissions4–7. With human-induced climate
change in the future, such an increasing trend is likely to continue in
many forested regions, suggesting even stronger BBA impacts, which

could lead to BB becoming a more important source of aerosol than
those with a direct anthropogenic origin8,9.

However, our current understanding of the impacts of BBA
remains weak. The net radiative effect of BBA is highly uncertain ran-
ging from strong warming to substantial cooling effects10–13, resulting
mostly from the inaccurately represented distribution and properties
of clouds and BBA14,15. The latter uncertainty is often linked with BBA
emissions, as their estimates differ by a factor of 3.8 (for organic
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aerosols) on a global scale with even larger mismatches on regional
scales16. Thus, global aerosol models driven by these emissions show
large diversities in simulating aerosol optical depth (AOD) for BBAs,
but with underestimations by a factor of 2−5 commonly observed17–20.
Consequently, BBA emissions are often inflated to bring modelled
AOD more in line with observations14,17–19,21, while other model aspects
are assumed to be reasonable. This correction may mask other
potential parametric and/or structural errors inmodels, including (but
not limited to) simplified assumptions on the aerosol mixing state22,23,
missing ageing and coating mechanisms24–26, incorrect particle size
distribution27, inaccurate aerosol hygroscopicity19,28, and mis-
represented removal processes29. However, the relative importance of
these errors for total BBA errors is still unclear. A quantitative assess-
ment of BBA errors in terms of multiple aspects would greatly con-
tribute to better modelling of aerosols which remain the most
uncertain climate forcers30.

Here, we investigate AOD errors over five key BB regions (see
Fig. 1) in the context of a well-known equation:

AOD= E × τ ×MEC ð1Þ

where E is total emissions, τ is the lifetime (defined as burden/emis-
sions), and MEC is the mass extinction coefficient (defined as AOD/
burden), and we solve the equation on a regional scale averaged over
the fire seasons. In this study, we adopted the following procedure: 1)
we established linear regressions for lifetime over precipitation and
Ångström Exponent (AE, an indicator of ambient particle size) and
between MEC and AE in an ensemble of models from the Aerosol
Comparisons betweenObservation andModels project (AeroCom, see
Supplementary Table 1); 2) we estimated the constrained lifetime and
MEC from these regressions and satellite observations of precipitation
and AE; 3) constrained emissions were then estimated from Eq. (1)
using satellite observations of AOD; and 4) finally, AOD errors in
individual models were attributed to emission, lifetime and MEC
contributions. This method allowed for an integrated assessment of
model AOD errors based on three interpretable components that are
constrained using observational datasets. Such a quantitative attribu-
tion of AOD errors due to multiple sources has, to our knowledge, not
been conducted previously. The resulting information can be imme-
diately used to improve model performance and has several key
implications detailed below. Notably, our constraining analysis was
conducted on a seasonal and regional scale. The constrained results
cannot be directly applied to a smaller scale within the regions.

Similarly, evaluations/interpretations of individual fires are beyond the
scope of this study.

Results
Estimating the constrained lifetime and MEC
The key to understanding AOD model errors due to the three sources
(emissions, lifetime, and MEC) is to estimate their observation-
constrained values. As a first step towards constraining MEC, we
found that the AeroCommodels suggested a rather linear relationship
betweenmodelledMEC and AE (see Fig. 2a as an example for Southern
Hemisphere Africa and Supplementary Fig. 1 for other regions), as both
are associated with particle size31. Similarly, we built linear regressions
between the modelled lifetime and precipitation due to the dominant
impact of precipitation on wet removal, which explains most of the
variations in lifetime29. The regression was further improved by
includingAE as an additional predictor (see Supplementary Fig. 2) since
aerosol removal is relevant to particle size32. The updated lifetime and
MEC regressions were validated using original model data, suggesting
good agreement (see Fig. 2c, d). By comparing the two predictors with
the observations, we found that the modelled precipitation deviated
substantially from the observations by a factor of 0.2−3.1, whereas the
modelled AEs were overestimated by more than half the models.

Then, we employed the regional observations of precipitation
and AE (see Methods) to the above linear relationships to constrain
lifetime and MEC for each region individually (Fig. 2). Unlike the
modelled lifetime that straddles the constrained values, the MEC in
most models was underestimated (see Table 1). This finding was
further confirmed by comparisons of the modelled MEC with data
collected from flight campaigns (Supplementary Fig. 3a), where the
observations suggested a larger MEC than most models. Moreover,
evaluation of particle radius in an individual model also indicated
that the modelled particle size was underestimated (see Supple-
mentary Fig. 3b for ECHAM-HAM model, also found in different
models by, e.g., Chin et al.27 and Brown et al.22). Notably, the com-
parisons of modelled particle size and MEC with observations were
affected by sampling errors due to the mismatch in time and space
(see Supplementary Tables 2, 3). However, underestimation of MEC
for BBAwas reported inprevious studies (e.g., ref. 28,33) andwas also
supported by data presented in Doherty et al. 13.

Constraining BBA emissions
After obtaining the constrained lifetime and MEC, we used regional
AODobservations to estimate constrained total emissions (seeTable 1).
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Fig. 1 | Geophysical distribution of biomass burning emissions and aerosol
optical depth (AOD) in 2010. a Annual organic carbon (OC) emissions based on
GFED (https://www.globalfiredata.org)35. b Annual mean AOD at 550 nm from
POLDER satellite observation (https://www.grasp-open.com)43. The boxes indicate
the spatial coverage of the five key biomass burning regions focused on here. The

dashed box shows the African outflow region of focus in this study. The embedded
diagrams show the corresponding monthly total emissions (a) and mean AOD (b).
The line colours in the embedded diagrams correspond to the boundaries in
the maps.
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These total emissions included secondary organic aerosol (SOA) for-
mation given the shorter formation time scale compared with the time
scale of our analysis (fire seasons). By excluding “background” emis-
sions (i.e., dust, sea salt, biogenic, and anthropogenic aerosols) that
accounted for less than 10% of total aerosol emissions (see Methods),
we compared the constrained BBA emissions with four emission
inventories (Fig. 3), including one bottom-up dataset based on burned
area and modelled fuel load (Global Fire Emission Database version
4.1 s [GFED]) and three top-down datasets relying on fire radiative
power (i.e., Quick Fire Emissions Dataset version 2.5 [QFED]; Fire
Energetics and Emission Research version 1.2 [FEER]; Global Fire
Assimilation System version 1.2 [GFAS])18,34–36. Note that the BBA

emissions were considered for species of black carbon (BC), organic
aerosol (OA), and sulfur dioxide (SO2), with dominance from the for-
mer two carbonaceous components. To compare these inventories
with our results, we converted the organic carbon (OC) emissions from
the four inventories toOAemissions by adopting theOA/OC ratio from
the AeroCom models (1.40–2.60) together with a recent field mea-
surement (1.67) for freshly emitted BBA37. The total BBA emissions
from the four inventories varied substantially by a factor of 3–10 for the
five regions. Our constrained emissions showed a smaller spread with
fully considered uncertainties resulting mainly from satellite retrieval
errors (see Methods and Supplementary Fig. 4). As seen, GFED, FEER,
and QFED agreed well with our constrained BBA emissions over the
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Fig. 2 | Linear regressions developed over AeroCom models to estimate the
constrained mass extinction coefficient (MEC) and lifetime. a The linear
regression for MEC over Ångström Exponent. b The linear regression for lifetime
over precipitation. Note that the real lifetime regression uses both precipitation
and the Ångström Exponent as predictors given the regression improvement
(Supplementary Fig. 2). In a and b, the regressions are shown for Southern Hemi-
sphere Africa as an example with each dot indicating the regional and fire-season
mean values in one model. The solid lines indicate the linear regressions together
with the 95% confidence intervals (shaded areas). The regional mean observations

of POLDER Ångström Exponent43 (a) and GPCP precipitation (b) are shown as
vertical dashed lines, and the corresponding horizontal dashed lines show the
constrained MEC (a) and lifetime (b) and 95% confidence intervals (dotted lines).
c, d Comparisons between the regression predictions and the original model data
over the five regions with error bars showing 50% prediction uncertainties. The
colours of the dots indicate data in the five regions. The metrics for all the regions
show the correlation coefficient (R), normalized mean bias (NMB), and root mean
square error (RMSE). Details of the regressions and validations can be found in the
Methods.

Table 1 | The constrained results from the present study compared with AeroCom models and observations

Amazon Southern Hemisphere Africa Southeast Asia Boreal North America Eastern Siberia

Precipitation (mm d−1) GPCPa 1.9 1.1 0.8 1.8 0.6

Models 2.1 [1.6, 2.3] 0.8 [0.5, 1] 0.9 [0.5, 1.7] 2.3 [2, 2.5] 1 [0.7, 1]

AE This studyb 1.4 [1.3, 1.4] 1.4 [1.3, 1.4] 1.2 [1.2, 1.3] 1.3 [1.2, 1.4] 1.1 [1, 1.2]

Models 1.4 [1.3, 1.7] 1.4 [1.2, 1.5] 1.2 [1.1, 1.5] 1.5 [1.1, 1.8] 1.5 [1.4, 1.9]

AOD This studyb 0.4 [0.38, 0.42] 0.56 [0.53, 0.59] 0.88
[0.84, 0.93]

0.16 [0.15, 0.18] 0.21
[0.19, 0.23]

Models 0.32 [0.29, 0.43] 0.34 [0.27, 0.44] 0.45 [0.41, 0.56] 0.13 [0.09, 0.2] 0.21
[0.16, 0.32]

Total emissionc (10−11kgm−2 s−1) This study 18.2 [16.4, 20.3] 27.9 [24.4, 32.5] 47.6 [42.4, 53.7] 10.3 [9.1, 11.5] 8.3 [7, 9.8]

Models 17.3 [14.1, 23] 12.7 [12.5, 23.7] 24.9 [17.7, 38.1] 7.8 [6.5, 11.5] 16 [13.4, 28.1]

Lifetime (d) This study 4.3 [4.1, 4.5] 4.0 [3.8, 4.1] 3.9 [3.6, 4.1] 3 [2.9, 3.1] 4.4 [4, 4.7]

Models 4.5 [3.8, 5.3] 4.5 [3.8, 4.9] 3.9 [2.9, 5.1] 2.8 [2.6, 3.3] 2.6 [2.1, 2.9]

MEC (m2 g−1) This study 5.9 [5.3, 6.5] 5.9 [5.2, 6.6] 5.6 [5.2, 5.9] 6 [5.6, 6.4] 6.8 [6.3, 7.4]

Models 5 [4.1, 5.8] 5.2 [4.3, 5.9] 5 [4.4, 6.1] 5.6 [4.6, 6.9] 5.1 [3.9, 5.8]

Observationd 7.5 [6.2, 10.7] 9.7 [6.5, 15.3] 5.4 [3.9, 7.9]

Data in brackets show the interquartile ranges.
aPrecipitation observation is from Global Precipitation Climatology Project version 2.3 (GPCP).
bValues denote the regional averages estimated based on POLDER data.
cTotal emissions include both BBA and background emissions.
dObservations are from flight campaigns in Supplementary Table 2.
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Amazon, suggesting that modelled AOD errors when using these
inventories were probably determined by the errors in lifetime and
MEC (similar for GFED and GFAS in Boreal North America). In Southern
Hemisphere Africa and Southeast Asia, three of the inventories (GFED,
FEER and GFAS) were significantly lower than our estimates, implying
missing emissions16,38,39. In contrast, QFED was much higher and likely
overestimated emissions over Africa and Southeast Asia. In Eastern
Siberia, inventories tended to be much higher except for FEER. This
analysis also suggested that the models exhibited different errors in
each region, which will require regionwise strategies to fix the bias in
the current emission inventories. With the OA/OC of 1.67 used37, the
average deviations for the five fire regions of the four inventories
relative to our estimations were −36%, −28%, −31%, and +69% for GFED,

FEER, GFAS, and QFED, respectively. Obviously, such deviations can be
largely altered with different choices of OA/OC. Further investigations
on this important parameter could reduce emission uncertainties.
Nevertheless, there are still significant differences between some
inventories and our constrained emissions after considering the
uncertainty in the OA/OC ratio, suggesting biases in the inventories.

Attributing AOD errors to emissions, lifetime and MEC
Model errors in AOD can now be attributed by comparing a model’s
emissions, lifetime, and MEC with the constrained values (see Meth-
ods). Figure 4 shows that a significant balancing of errors existed in
almost all models. We found a substantial bias induced by emissions,
mostly underestimation except for the Amazon and Eastern Siberia
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regions, as mentioned previously. The differences in the emission-
related bias were associated with the choices of emission datasets and
assumptions on OA/OC ratios in the models (see Supplementary
Table 1). However, AOD errors cannot be fully explained without
considering errors related to lifetime and MEC, which either com-
pensated for or exacerbated errors caused by emissions. In fact, AOD
errors were less contributed by the emission errors (38 ± 19%) than the
total errors inducedbyMEC (27 ± 19%) and lifetime (22 ± 15%)errors for
the whole ensemble of models. The cross effects between the three
factors were nonnegligible but less important (13 ± 9%) for the whole
ensemble, although individual models contained large cross-term
errors. Despite the uncertainties shown in Supplementary Fig. 5, we
observed negative errors due to MEC in most models, suggesting a
common issue of modelled particle sizes that are too small. Although
some models showed near perfect agreement with AOD observations
(e.g., ECHAM-HAM model from CTRL2016 over Amazon), it does not
necessarily guarantee the reliability of all three modelled aspects, as
the overall agreement could result from compensation of substantial
individual deviations. Consequently, estimating BBA emissions based
merely on AOD observations (as is done for QFED36) could result in
strong uncertainties related to the modelled lifetime and MEC. Fur-
thermore, the compensation among the errors from the three aspects
varied substantially per model and region. This finding suggested that
different strategies should be taken when handling these errors
instead of focusing on emissions only.

Estimating African outflow AOD in AeroCom models
Better constraining BBA has profound implications not only on the
source regions but also on the outflow areas since BB plumes are
usually transportedover a longdistance. Basedon theAeroCommodel
data, we constructed a multivariate linear model to predict the AOD
over the African outflow region (given that Africa has the highest
emissions of all continents) in response to the emissions, lifetime, and
MEC in the source region (see Methods). Then, we investigated the
impact on outflow AOD of two different methods of correcting AOD
errors in the source region: 1) Using the default model configuration
but increasing BBA emissions in the source region to match the
observed AOD, as was done in previous studies (emission-based cor-
rection, or EC, see Methods); or 2) emissions, lifetime, and MEC were
simultaneously corrected to the constrained values (multifactor cor-
rection, or MFC). The estimated outflow AODs for the two corrections
are shown in Fig. 5 for all the AeroCom models, indicating general

overestimations in the EC case because too much BBA was injected
into the atmosphere. In contrast, the MFC case agreed better with the
observation, which supported the validity of our error attribution
methodology. This finding highlighted that addressing lifetime and
MEC errors would greatly reduce the overall BBA uncertainties in both
source and vast outflow regions.

Correcting global model (ECHAM-HAM) simulations
Furthermore, we carried out amodel simulationwith the ECHAM-HAM
modelwhich had its wet deposition efficiency and emitted particle size
modified to better agree with our constrained lifetime and MEC (MFC
case, see Methods). This model performed much better over the
African source region compared with the default case, reducing the
regional AOD errors from −62% to −10% (Fig. 6). In addition, it also
corrected the AOD underestimation in the outflow region, with much
better performance than a simulation in which only emissions were
adjusted, which led to a large overestimation (EC case, see Fig. 6 and
Supplementary Fig. 6). The EC simulation resulted in many more par-
ticles that can serve as cloud condensation nuclei, which may modify
the formation of clouds and affect precipitation40. Note that in these
two simulations, the existing north-south gradient in the AOD errors
wasnot entirely corrected (see SupplementaryFig. 6). Studies focusing
on local instead of regional dynamics are needed to better understand
this remaining uncertainty.

The all-sky instantaneous direct radiative effect (IDRE) (Supple-
mentary Fig. 7) was also affected by how we corrected the model. As
with AOD, we observed a notable difference over the southern Africa
outflow region, where the EC simulation showed a much stronger
warming effect (20.5 ± 11.5W/m2) than the MFC case (9.5 ± 5.1W/m2).
We further compared the IDRE with previous studies based on flight
campaigns and satellite observations (Supplementary Table 4). The
reported IDRE differs substantially and is partly driven by different
assumptions on cloud cover and properties. Despite large uncertain-
ties, the reported IDREs were generally lower than the EC prediction,
suggesting a possible overestimation of the warming effects in EC. The
strong warming in the EC simulation was associated with super-
abundant absorbing aerosols (e.g., BC, see Supplementary Fig. 8). The
increases in the absorbing aerosols would further modify the strato-
cumulus cloud properties and atmospheric circulation, introducing
extra uncertainties in the radiative budget41,42. Note that the MFC
simulation yieldedbetter agreementwith independent observationsof
absorbing aerosol than the EC simulation, even though such
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Fig. 5 | Estimated aerosol optical depth (AOD) over the outflow region of
Southern Hemisphere Africa for AeroCom models. The Default results refer to
the original model output. Two corrections (EC and MFC) are adopted over the
source region (Southern Hemisphere Africa) only, and their results are based on
our multivariate linear regression for AeroCom models. For the EC case, only
emissions are rescaled according to the AOD errors in the source region. For the
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thin error bars of EC case for individual models (1-17) and the MFC case show the
50% confidence intervals which considered the uncertainties in the input data (i.e.,
the rescaled emission in the EC case and the constrained values in the MFC case)
and the meta-model regression (see Methods). Note that the MFC prediction is
shownas a single dot (with error bar) since it is obtained froma single predictionby
using the constrained emission, lifetime, and MEC (see Methods). For validation,
the POLDER observation43 is presented as the median (black dashed line) and
interquartile (grey shaded area) obtained from the construction of regional AOD
(see Methods).
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observations were not used in identifying or correcting model errors
(see Supplementary Fig. 8).

Discussion
By evaluating anensemble of globalmodels from theAeroComproject
against satellite observations, we were able to attributemodelled AOD
errors for BBAs over source regions to incorrect emissions, lifetimes,
or MECs. This error attribution was further validated with a simple
estimate of the outflow AOD for the African BBA, flight campaign
in situ observations, and detailed model simulations. Our results show
that errors in lifetime and MEC contribute significantly to the overall
error in modelled AOD, which previously have been improperly
attributed to errors in emissions. Moreover, AOD errors usually result
from multiple error sources that frequently balance each other. Con-
sequently, scaling emissions to obtain a better agreement with
observations leads to errors in outflow regions. In turn, this has
implications for the BB aerosol forcing. As an example, our model
simulations suggested that only scaling emissions tomatch AOD could
introduce substantial biases in the magnitude of radiative forcing in
the outflow regions. Such biases are likely to be exacerbated in the
future, as most climate models project more prevailing fires in key BB
regions8,9. For such foreseeable fires, our method would benefit
understanding and addressing potential BBA errors in global aerosol
models. With proper extensions, this method could be further applied
to other aerosol sources, regions, and possibly even global studies.
Accounting for model errors using this method would contribute to
narrowing down the overall aerosol uncertainties in atmospheric and
climate research with relatively smaller computational costs than
perturbed parameter ensembles or data assimilation experiments.

Our work presents an attempt to quantitatively distinguish the
role of emissions versus model parameterizations (with a focus on
lifetime and MEC) in creating AOD errors of BBA. Although there have
been studies discussing the existence of errors in both models and
emissions, only qualitative conclusions could be reached, and the
contributions of these error sources to the overall AOD error are still
missing. Our results highlight the priority of addressing model biases
to properly represent BBAs, which also has the potential to improve
the representation of other (anthropogenic) aerosol sources. This
work is based on a large model ensemble, which can avoid systematic
biases in a specific model, although uncertainties exist. In particular,
we find that the satellite retrieval error of AE plays a significant role in
the overall uncertainties of our work. The uncertainties due to satellite
retrieval errors can be reduced by using the AERONET dataset, which
cannot significantly reduce the overall uncertainties due to the large

sampling biases with poor data coverage (see Methods and Supple-
mentary Fig. 9). Therefore, future satellite products with improved
data quality (low retrieval errors) and increased data coverage would
greatly reduce the uncertainties of our work.

Methods
Biomass burning regions
The study focused on aerosols over five key BB regions: the Amazon,
Southern Hemisphere Africa, Southeast Asia, Boreal North America,
and EasternSiberia. Thefire season in 2010wasdefined for each region
based on recorded BBA emissions and satellite-observed AOD peaks.
The spatial distribution and monthly evolution of BBA emissions and
AOD over the five BB regions are mapped in Fig. 1. According to the
GFED database, the major burned biome types that contributed sig-
nificantly to the global BB aerosol budget were included in these five
BB regions (i.e., tropical forest, savanna, grassland, and boreal forest).
In total, emissions from these five regions accounted for more than
half of the global total BBA emissions for BC and OC35. Based on BBA
emissions and AODobservations, we defined the BB seasons in 2010 as
follows: July to October for Amazon, June to September for Southern
HemisphereAfrica,March for Southeast Asia, June toAugust forBoreal
North America, and July for Eastern Siberia.

AeroCom models and observation data
We used modelled AOD data at 550 nm from two control experiments
(CTRL2016, CTRL2019) in phase III of the Aerosol Comparisons
between Observations and Models project (AeroCom). AeroCom is an
open international initiative aiming at a better understanding of global
aerosols and their impact. The two phase III control experiments
represent the state-of-the-art aerosol modelling for 2010. A total of 17
models were involved, as detailed in Supplementary Table 1. In addi-
tion to AOD data, data on emissions, aerosol burdens, precipitation,
and Ångström Exponent (AE, calculated from AOD at 550 nm and
440 nm) were also used.

Observations of AOD and AE in 2010 were taken from the
POLarization and Directionality of the Earth’s Reflectances (POLDER)
sensor on the PARASOL platform using the Generalized Retrieval of
Atmosphere and Surface Properties algorithm43. The POLDER data
were validated previously on the global scale and have shown better
performance than other satellite datasets44,45. We used precipitation
from the Global Precipitation Climatology Project (GPCP) version 2.3
as observations. GPCP combines satellite estimates and ground mea-
surements to estimate precipitation globally and has been used to
evaluate global climate models before46,47. BBA particle size and MEC
from field measurements and flight campaigns were also collected to
further verify the modelled aerosol properties (see Supplementary
Tables 2, 3).

The modelled AOD was first regridded into 1° × 1° grid cells and
compared against POLDER observations using 3-hour average data for
CTRL2016 models and daily data for most CTRL2019 models. The
normalized mean bias for the five fire regions is listed in Supplemen-
tary Table 1, showing a diverse, generally negative bias.

The constraining procedures in this study required regional
average observations. We estimated regional AOD (and AE) based on
the combination of models and raw POLDER data using the modelled
linear relationships between regional average AOD and sampled AOD
(see Supplementary Method 1 and Supplementary Fig. 10). Note that
models with monthly output were not used for reconstructing the
regional AOD (and AE) considering the substantial sampling issues48,49.

Constraining emission, lifetime, and MEC
We used Eq. (1) to distinguish the three aspects of the modelled AOD
errors. The regional and seasonal averages of emissions, aerosol bur-
den, and AODwere used to calculate lifetime (= burden/emission) and
MEC (= AOD/burden) to present a fire-season average. Emissions,
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Fig. 6 | Modelled aerosol optical depth (AOD) errors in the source and outflow
region of Southern Hemisphere Africa by ECHAM-HAM model. All the simula-
tions are collocated and comparedwith POLDER satellite AODdata43 during the fire
season. Simulations are performed in three cases: 1) default case, 2) EC case, where
we only increase the emissions in the source region to match AOD observations;
and 3) MFC case, where we modify the emission, precipitation (for correcting
lifetime), and particle size (for correcting MEC). The results are shown as the
median (solid lines) and interquartile (shaded areas) of the seasonal AOD errors for
all grid cells within the latitudinal range shown in Supplementary Fig. 6. Details
about the three cases can be found in Methods.
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burden, and AOD were totalled for all aerosol species in each model,
including OA, BC, sulfate (including SO2 in emissions), sea salt, and
dust. Given the short time scale of SOA formation compared to the fire
seasons analysed here, we treated SOA formation as part of the total
emissions. We additionally assumed that the ageing of SOA did not
modify the total aerosol mass and properties significantly on a sea-
sonal scale, since the overall ageing mechanism remained highly
uncertain and poorly understood50–52. Our meta-model for Africa out-
flow AOD could successfully reproduce POLDER observations (see
Fig. 5), suggesting that these assumptions were acceptable.

Equation (1) has been used to intercompare models53, and indi-
vidual factors have also been studied from an observational point28. To
constrain lifetime and MEC, we built linear regressions within the
AeroCom model ensemble for each BB region (see Fig. 2 and Supple-
mentary Fig. 1) with the following forms:

1=τ =a1Pr +a2AE +a3;MEC =b1AE +b2 ð2Þ

where Pr denotes the total precipitation strength. For lifetime, we
also found aweak correlation between lifetime and plume heights in
addition to the above two predictors, but it was inconsequential for
our analysis. Similarly, we also found that MEC in specific models
was related to relative humidity and/or single-scattering albedo.
These relationships were relatively weak for the whole model
ensemble and had little effect on our results. By employing the
observations of precipitation and AE to these regressions, we then
constrained lifetime and MEC. Compared with modelled precipita-
tion and AE, which exhibit large diversities among models, the
observed precipitation and AE and the constrained lifetime and
MEC are within the model spread, lending further credibility to the
estimates. Using the regional AOD, we finally calculated the
constrained total emissions based on Eq. (1). Constrained BBA
emissions were further estimated by subtracting separate estimates
of background emissions, including anthropogenic aerosols, bio-
genic SOA, dust, and sea salt (see Supplementary Table 5). In total,
these background emissions contributed less than 10% of the
constrained total aerosol emissions. Note that the constrained BBA
emissions also included SOA production from the BB source. All the
constrained values are detailed in Table 1 in comparison with the
model and observation data.

To verify the robustness of our approach for constraining these
three components, we tested the methodology by removing one
model and assuming it to be the truth. The corresponding modelled
emission, lifetime, andMECcould thenbe compared against the values
constrained from the remaining models, as shown in Fig. 2c, d and
Supplementary Fig. 11. These comparisons suggested good agreement
between the originally modelled and predicted values, demonstrating
the reliability of this approach. In addition, we also tested the
robustness of the constrained estimates by excluding one of the
models from the ensemble or removing two models with the highest/
lowest precipitation (or AE). As shown in Supplementary Fig. 12, this
will mostly give very similar estimates of constrained values as the
original analysis based on all models, suggesting that our results were
insensitive to extreme values from specific models. This further
demonstrated the robustness of our predictions.

Error attribution
Based on Eq. (1), we calculated the modelled AOD errors due to one
component (total emission, lifetime, and MEC) by multiplying the
error in that component with the constrained value of the other two
components. Equation (3) gives an example of emission-induced
errors (εE).

εE =4E × τ0 ×MEC0 ð3Þ

We also introduced an error cross term that contained the dif-
ference between the full model AOD error and the sum of errors from
all three components. This result indicated the error interactions
among the three components.

Uncertainty estimation
We utilized a Monte-Carlo approach to quantify the uncertainties of
our analysis resulting from 8 uncertain parameters (see Supplemen-
tary Method 2). In the case of constrained BB emissions (Supplemen-
tary Fig. 4), the retrieval error of AE was the leading contributor to the
overall uncertainties (24% on average), followed by AOD retrieval
errors (11%).We further repeatedour constraining procedures over the
Amazon region using AERONET data (other regions were neglected
because of the poor AERONET coverage), for which the retrieval errors
were assumed to be zero. A comparison between the results using
AERONET and POLDER (Supplementary Fig. 9) suggested an agree-
ment within their stated uncertainties, with slightly larger uncertain-
ties found for the former. The larger uncertainties in the AERONET-
based results resulted mainly from the uncertainty of regional values
due to much smaller spatiotemporal data coverage.

Estimation of AOD in the Africa outflow region
The AOD in the Atlantic outflow of the BBA from South Hemisphere
Africa was modelled by multivariate linear regression from AeroCom
model data. We assumed that the regional, fire-season average burden
in the outflow region (MO) can be modelled as a linear process:

Mo =αEsτs + β ð4Þ

where Es and τs are the emission and lifetime of aerosols over the
African source region, respectively, and β indicates the background
aerosols (e.g., sea salt). For MEC over the southeast Atlantic region
(MECO), which is dominated by aged BBA, we used a simple linear
relation with MEC over the source region (MECs) to broadly represent
the ageing process:

MECo = γMECs +θ ð5Þ

By combining Eqs. 4 and 5, the relation between AOD over Africa
outflow region (AODo) and aerosol from the source region can be
written as follows:

AODo = αEsτs +β
� �

× γMECs +θ
� �

=A × EsτsMECs +B× Esτs +C ×MECs +D

ð6Þ

The coefficients (A, B, C, D) can be obtained from amultiple linear
regression based on all model data. Supplementary Fig. 13 shows an
evaluation of this simple model for the outflow AOD, suggesting rea-
sonably good agreement. Then, we adopted the EC and MFC cases to
correct AOD errors over the source region using Eq. (6). For the EC
case, we only scaled emissions by modelled AOD errors relative to
POLDER observations. In contrast, we changed the total emissions,
lifetime, and MEC to the constrained values as estimated above in the
MFC case.

ECHAM-HAM simulations
The ECHAM-HAMmodel was run at T63 horizontal resolution, with 47
vertical layers with the M7 submodule for aerosol microphysics54.
Emissions for major aerosol sources were taken from GFED for BB, the
Community Emissions Data System for anthropogenic sources, the
AeroCom phase II dataset for biogenic volatile organic compounds,
and online calculations for dust and sea salt. Meteorology was nudged
with ECMWF Reanalysis v5 (ERA5). The simulations covered the entire
fire season for Southern Hemisphere Africa and started three months
earlier for model spin-up. We compared three different cases within
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ECHAM-HAM (see Supplementary Table 6): 1) the default model con-
figuration; 2) the EC case using default model configuration but with
emissions over the Africa source regions scaled tomatch POLDERAOD
observations; and 3) the MFC case with a modified model configura-
tion based on the error attribution done for ECHAM-HAM. Different
from the previous meta-model analysis where we could directly apply
the constrained results (i.e., emission, lifetime,MEC),wehad tomodify
model aspects for the MFC case in ECHAM-HAM simulations.

To correct themodel’sMEC,weused a larger emittedBBAparticle
size than the default. This was based on the observed overestimation
of AE that suggested that particles were too small by default. In prac-
tice, we increased the emitted particle size to 200 nm and slightly
inflated the ambient size by 10% based on a series of experiments with
various emitted and ambient sizes (see Supplementary Fig. 14).
Although other solutions were also feasible (e.g., larger mode widths,
increasing coagulation or condensation), the detailed way to modify
the particle size did notmatter here, as themost important aspect was
to achieve a larger ambient particle (and larger MEC). Regarding life-
time, both precipitation and particle size could affect the deposition
(andhence lifetime). In addition to the abovecorrectionon theparticle
size, we further scaled the wet deposition based on the observed
precipitation error over the source region (−69%). We did not directly
alter precipitation because it would result in changes in the entire
hydrological cycle in the model. Again, the detailed way to rescale
precipitation did not matter as long as the modelled lifetime was
corrected towards the constrained value. BecauseBBAwas the focusof
this work, weonly adopted the EC andMFC corrections to the BBA and
the background aerosols were additionally simulated with a back-
ground run using the default configuration, as detailed in Supple-
mentary Table 6.

Data availability
The AeroCommodel data can be accessed from https://aerocom.met.
no. POLDERobservations can bedownloaded fromhttps://www.grasp-
open.com/products/polder-data-release. GPCP data can be down-
loaded from https://climatedataguide.ucar.edu/climate-data/gpcp-
daily-global-precipitation-climatology-project. BBA emissions from
the four emission inventories can be downloaded from https://www.
geo.vu.nl/~gwerf/GFED/GFED4 for GFED, https://apps.ecmwf.int/
datasets/data/cams-gfas for GFAS, https://feer.gsfc.nasa.gov/data/
emissions for FEER, https://portal.nccs.nasa.gov/datashare/iesa/
aerosol/emissions/QFED/v2.5r1/0.1/QFED for QFED. Sources of inde-
pendent observations canbe found in the Supplementary Information.
The ECHAM-HAM simulation data are deposited in Zenodo (https://
doi.org/10.5281/zenodo.7020733).

Code availability
The ECHAM-HAM model source code can be accessed at Redmine:
https://redmine.hammoz.ethz.ch. Data processing and analysis in this
paper were conducted using the Community Intercomparison Suite
(CIS, http://www.cistools.net).
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